Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

Identifieur interne : 002563 ( Main/Exploration ); précédent : 002562; suivant : 002564

Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

Auteurs : Weidong Gao [République populaire de Chine] ; Shuang Bai ; Qingmei Li ; Caiqiu Gao ; Guifeng Liu ; Guangde Li ; Feili Tan

Source :

RBID : pubmed:23840708

Descripteurs français

English descriptors

Abstract

Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

DOI: 10.1371/journal.pone.0067462
PubMed: 23840708
PubMed Central: PMC3696074


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).</title>
<author>
<name sortKey="Gao, Weidong" sort="Gao, Weidong" uniqKey="Gao W" first="Weidong" last="Gao">Weidong Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bai, Shuang" sort="Bai, Shuang" uniqKey="Bai S" first="Shuang" last="Bai">Shuang Bai</name>
</author>
<author>
<name sortKey="Li, Qingmei" sort="Li, Qingmei" uniqKey="Li Q" first="Qingmei" last="Li">Qingmei Li</name>
</author>
<author>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
</author>
<author>
<name sortKey="Liu, Guifeng" sort="Liu, Guifeng" uniqKey="Liu G" first="Guifeng" last="Liu">Guifeng Liu</name>
</author>
<author>
<name sortKey="Li, Guangde" sort="Li, Guangde" uniqKey="Li G" first="Guangde" last="Li">Guangde Li</name>
</author>
<author>
<name sortKey="Tan, Feili" sort="Tan, Feili" uniqKey="Tan F" first="Feili" last="Tan">Feili Tan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23840708</idno>
<idno type="pmid">23840708</idno>
<idno type="doi">10.1371/journal.pone.0067462</idno>
<idno type="pmc">PMC3696074</idno>
<idno type="wicri:Area/Main/Corpus">002543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002543</idno>
<idno type="wicri:Area/Main/Curation">002543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002543</idno>
<idno type="wicri:Area/Main/Exploration">002543</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).</title>
<author>
<name sortKey="Gao, Weidong" sort="Gao, Weidong" uniqKey="Gao W" first="Weidong" last="Gao">Weidong Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bai, Shuang" sort="Bai, Shuang" uniqKey="Bai S" first="Shuang" last="Bai">Shuang Bai</name>
</author>
<author>
<name sortKey="Li, Qingmei" sort="Li, Qingmei" uniqKey="Li Q" first="Qingmei" last="Li">Qingmei Li</name>
</author>
<author>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
</author>
<author>
<name sortKey="Liu, Guifeng" sort="Liu, Guifeng" uniqKey="Liu G" first="Guifeng" last="Liu">Guifeng Liu</name>
</author>
<author>
<name sortKey="Li, Guangde" sort="Li, Guangde" uniqKey="Li G" first="Guangde" last="Li">Guangde Li</name>
</author>
<author>
<name sortKey="Tan, Feili" sort="Tan, Feili" uniqKey="Tan F" first="Feili" last="Tan">Feili Tan</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Hair Removal (methods)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Salinity (MeSH)</term>
<term>Salt Tolerance (genetics)</term>
<term>Salt Tolerance (physiology)</term>
<term>Stress, Physiological (genetics)</term>
<term>Stress, Physiological (physiology)</term>
<term>Tamaricaceae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Salinité (MeSH)</term>
<term>Stress physiologique (génétique)</term>
<term>Stress physiologique (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Tamaricaceae (génétique)</term>
<term>Tolérance au sel (génétique)</term>
<term>Tolérance au sel (physiologie)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
<term>Épilation (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Salt Tolerance</term>
<term>Stress, Physiological</term>
<term>Tamaricaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Tamaricaceae</term>
<term>Tolérance au sel</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Hair Removal</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Épilation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Stress physiologique</term>
<term>Tolérance au sel</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Salt Tolerance</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Salinity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Salinité</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23840708</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).</ArticleTitle>
<Pagination>
<MedlinePgn>e67462</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0067462</ELocationID>
<Abstract>
<AbstractText>Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Weidong</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bai</LastName>
<ForeName>Shuang</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qingmei</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Caiqiu</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Guifeng</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Guangde</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Feili</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C066246">late embryogenesis abundant protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006204" MajorTopicYN="N">Hair Removal</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032363" MajorTopicYN="N">Tamaricaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23840708</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0067462</ArticleId>
<ArticleId IdType="pii">PONE-D-13-05784</ArticleId>
<ArticleId IdType="pmc">PMC3696074</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Apr;7(4):502-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22499169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Feb 15;167(3):222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19853962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Nov;124(6):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jul;56(417):1933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Oct;38(7):4813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21153767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Nov;26(11):2017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 25;1730(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16023228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Oct;14(10):2601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21136074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):107-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Mar 15;169(5):459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jun;232(1):71-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1986 May;7(3):155-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Mar;39(3):2883-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21681426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):4889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22109899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Aug;234(2):229-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21399949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Feb;39(2):1047-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Mar;30(3):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Nov 5;577(1-2):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol (Mosk). 2011 Sep-Oct;45(5):851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22393782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Feb;37(2):1119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19830589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bai, Shuang" sort="Bai, Shuang" uniqKey="Bai S" first="Shuang" last="Bai">Shuang Bai</name>
<name sortKey="Gao, Caiqiu" sort="Gao, Caiqiu" uniqKey="Gao C" first="Caiqiu" last="Gao">Caiqiu Gao</name>
<name sortKey="Li, Guangde" sort="Li, Guangde" uniqKey="Li G" first="Guangde" last="Li">Guangde Li</name>
<name sortKey="Li, Qingmei" sort="Li, Qingmei" uniqKey="Li Q" first="Qingmei" last="Li">Qingmei Li</name>
<name sortKey="Liu, Guifeng" sort="Liu, Guifeng" uniqKey="Liu G" first="Guifeng" last="Liu">Guifeng Liu</name>
<name sortKey="Tan, Feili" sort="Tan, Feili" uniqKey="Tan F" first="Feili" last="Tan">Feili Tan</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Gao, Weidong" sort="Gao, Weidong" uniqKey="Gao W" first="Weidong" last="Gao">Weidong Gao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002563 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002563 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23840708
   |texte=   Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23840708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020